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1. Introduction
As we consider the impact of sensor-level packet loss (SLPL) on network intrusion
detection (NID), we observe that NID depends upon the sensor being able to see the
traffic between the adversary and the target. General packet loss is very common on
the Internet. The Transmission Control Protocol is specifically designed to account
for general packet loss and uses it as a barometer to gauge the available bandwidth
of a connection.1 In this report we are not interested in general packet loss because
those packets cannot cause a compromise since they will never reach the target. We
are interested in what we call detection-relevant packet loss (DRPL). DRPL occurs
when packets reach the target but fail to reach the sensor software for analysis. Since
the sensor cannot detect what it cannot see, DRPL must have a negative impact on
the sensor’s ability to detect malicious activity. Based upon the large amount of
work that has been done to reduce or eliminate DRPL on NID, we infer that the
negative impact of DRPL on NID is well known. This report is part of a larger effort
to understand, predict, and model the impact of DRPL on NID. In our previous
theoretical work,2 we divided DRPL into network, host, and sensor levels. In this
report, we will focus on DRPL at the sensor level. SLPL is defined as any packets
that are processed by the host operating system but are not processed by the analysis
software.

The focus of this report is to answer 2 research questions concerning the manifes-
tation of SLPL and the impact of SLPL on NID: 1) Is there sufficient regularity in
SLPL to allow an algorithm to be developed to model it? and 2) Is the impact of
SLPL on NID performance sufficiently regular to allow a formula to be developed
that will accurately predict the effect? We discovered that the manifestation of SLPL
is not random but is very similar to the capped algorithm of the packet dropper we
developed in our previous theoretical work.2 We also discovered that the impact of
SLPL is not random but is very similiar to both the results of the capped-by-packet
algorithm of the packet dropper and a sigmoid function. When we used regression
techniques to compare these algorithms, each of them had R2 and χ2

v values very
close to 1. These discoveries allow us to answer both of our research questions in
the affirmative.

In Section 2 we provide an overview of the existing research, which is heavily
focused upon eliminating packet loss at the sensor level. In Section 3 we discuss
the Pcapreplay program, which we developed to explore SLPL, the dataset that we
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used in these experiments, the experiment to characterize SLPL, and the experiment
to measure the impact of SLPL. Section 4 describes the results of our experiments
and our regression analysis of these results, and Section 5 summarizes our results
and discusses future work.

2. Background
In previous research2 we considered the theoretical impact of packet loss on NID.
We divided the potential for packet loss among the network, host, and sensor level.
We also defined network-level packet loss as any packet that reaches the target but
fails to reach the network segment where the sensor is located. Additionally, we
defined host-level packet loss as any packet that reaches the network interface of
the sensor but is not presented to the analysis software. SLPL is defined as any
packet that is presented to the analysis software but is not processed. The various
level of packet loss may be seen in Fig. 1. SLPL is represented by bit bucket C.

Fig. 1 Detection-relevant packet loss diagram
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We constructed the packet dropper, which abridges datasets according to several
different algorithms we implemented to emulate our theories about how packets
may be lost. We also visualized the characterization of this packet loss by graph-
ing the network traffic from 2.5 min of traffic from the 2009 Cyber Defense Exer-
cise(CDX)3 dataset, which we describe in detail in Section 3.2, as it was abridged
at 25% packet loss by each of the packet dropping algorithms.2

Although work has been done to reduce or eliminate packet loss, there has been
little work done to understand and model packet loss and its impact on NID. We
were able to glean several insights into packet loss from the work done to reduce
or eliminate packet loss. In Schaelicke and Freeland’s work on characterizing the
sources and remedies for packet loss in NID, they obtained some improvements in
packet loss rates by increasing the level of optimization employed in the compiler.4

They also found that significant improvements in packet loss could also be achieved
by pruning the sensor rule set.4 Additionally, Salah, in his work on improving snort
performance under Linux, discovered that setting the netdev_budget, which is a
kernel configuration parameter in the New Application Programming Interface, to
a low number greatly decreases packet loss.5 He concluded that this occurred pri-
marily because pulling packets from the network and analyzing the packets are
bound by available central processing unit (CPU) cycles and not buffer memory.
Allocating the bulk of the CPU time to the sensor application enables the system to
process more packets. Additionally, the packets that are dropped are dropped very
early in the process, preventing CPU cycles from being wasted processing packets
that will only be dropped later.5 Futhermore, in their work on hash-based load bal-
ancing, Kim et al. successfully employed multiprocessing techniques to increase
the throughput of the sensor and reduce packet loss.6 In their work on achieving
flow-level controllability in NID, Song et al. point to the software crash as yet an-
other cause of packet loss.7 Finally, in their work on adapting the intrusion detection
system model to load characteristics under Internet Protocol version 6, Wei et al.
proposed breaking the detection task into 3 units: the Data Acquisition Unit, the
Adapt Load Characteristic Analysis Unit, and the Collaborative Analysis and Con-
trol Center.8

Revisiting bit bucket C in Fig. 1, we expected that the resource consumption of
the sensor application itself will contribute the greatest component of packet loss at
this level. We theorized that we could simulate this effect through a cyclic function,
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such as a sine wave that would model a process gathering resources, performing its
task, and releasing the resources.2

3. Approach
Our approach to answering our research questions requires several building blocks.
First, we will need some method to simulate and isolate SLPL; we will use the
Pcapreplay program developed for this effort, as described in Section 3.1. We will
also need NID software for our experiment; we will use Snort9 for this purpose.
Last, we will need network capture data in Tcpdump10 format; we will use portions
of the CDX11,12 2009 dataset, described in greater detail in Section 3.2, for this
purpose. We will compare this data to data generated using the packet dropper2 we
developed in a previous effort. In addition to the tools descibed above, our approach
to answer our first research question is detailed in Section 3.3, and our approach to
answering our second research question is detailed in Section 3.4.

3.1 Pcapreplay
Answering our research questions requires that we isolate and measure SLPL. If we
configured Snort to read from the network stack, it would be impossible to know
whether the packets were dropped because the network stack could not process
them or because Snort could not process them in time. To isolate the sensor layer,
we will pipe packets in Tcpdump format to Snort on standard input. Snort will re-
port the number of packets that it dropped; however, that will provide no insight
into which packets were dropped. Snort will either capture packets or it will ana-
lyze packets, but it will not do both. To gain insight into how these packets are lost,
we will need to have some way to record which packets are lost. To do this, we have
written the Pcapreplay tool, which reads a file in Tcpdump format using Libpcap13

and writes the packets in Tcpdump format at any multiple of the original speed.
Packets that cannot be written in time are written to a bit bucket file. We can then
analyze the bit bucket file to gain insight into how the packets are lost in order to
determine if there is sufficient regularity in SLPL to allow an algorithm to be devel-
oped to model it. We understand that in many ways this is similar to the Tcpreplay14

command, which will take packets from a file saved in Tcpdump format and replay
them on the network at any multiple of the original captured speed.

Algorithm 1 provides the psuedo code for the core of the Pcapreplay application.
The trickiest part of this algorithm is the fudge factor, which was included because

4



the library functions sleep15 and usleep16 are guaranteed to sleep for the specified
time; however, they may oversleep. We added the fudge factor to account for the
system oversleeping.

Algorithm 1 Core Pcapreplay algorithm
Require: fileStartT ime = 0

while get next packet do
fileT ime← packetT ime
currentT ime← gettimeofday()
if fileStartT ime = 0 then
fileStartT ime← fileT ime
startT ime← currentT ime
elapseStartT ime← currentT ime
initialDifference← currentT ime− fileT ime

end if
elapseT ime← currentT ime− startT ime
effectiveT ime← fileStartT ime+ elapseT ime ∗ accelerator
if filetime+ fudge ≥ effectiveT ime then
packetsWritten← packetsWritten+ 1
sleepT ime = (fileT ime− effectiveT ime)/accelerator
sleep(sleepT ime)
timeNow = gettimeofday()
newEffectiveT ime← timeNow − initialDifference
if newEffectiveT ime > effectiveT ime+ sleeptT ime then
fudge = newEffectiveT ime− effectiveT ime− sleepT ime

end if
writepacket
flushstream

else
packetsDropped← packetsDropped+ 1
write packet to bit bucket

end if
end while

To validate that Pcapreplay is actually replaying packets at the specified multiple
of the orginal speed, we will use the script described in Algorithm 2 to conducted
several trials measuring the time it takes for Pcapreplay to replay 1 h of network
traffic. A full description of the capabilities and options of the Pcapreplay tool is in
the Appendix. We will use the script described in Algorithm 3 to conduct several
trials measuring the time it takes for Tcpreplay to replay the same 1 h of network
traffic. If Pcapreplay is working correctly, we should find that the results are very
similar. These results may be found in Table 1. Computing the value of R2 for
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Pcapreplay, using Formula 1, we get 0.9999, which is the sameR2 value that we get
for Tcpreplay and close enough to 1 for us to conclude that Pcapreplay is actually
replaying packets at the correct speed.

R2 =
SSreg

SStot
. (1)

SSreg =
n∑
i=1

(ŷi − ȳi)2. (2)

SStot =
n∑
i=1

(yi − ȳ)2. (3)

Algorithm 2 Validate Pcapreplay shell script

# ! / b i n / sh
speed =1
w h i l e [ ${ speed } − l t 2048 ] ; do

t ime \
p c a p r e p l a y −x ${ speed } −b / dev / n u l l −w / dev / n u l l $∗
speed = ‘ exp r ${ speed } \∗ 2 ‘

done

Algorithm 3 Validate Tcpreplay shell script

# ! / b i n / sh
speed =1
w h i l e [ ${ speed } − l t 2048 ] ; do

t ime t c p r e p l a y −x ${ speed } − i e t h 1 $∗
speed = ‘ exp r ${ speed } \∗ 2 ‘

done

3.2 Dataset
Annually, the National Security Agency/Central Security Service conducts an ex-
ercise pitting teams from the military academies of the United States and Canada
against teams of professional network specialists to see who can best defend their
network.3 In their paper, “Toward Instrumenting Network Warfare Competitions to
Generate Labeled Datasets”, Sangster et al.11 describe their efforts to collect and
label traffic from the 2009 competition. We were able to obtain this data from
https://www.itoc.usma.edu/research/dataset/.
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Table 1 Pcapreplay and Tcpreplay validation values

Speed Expected Pcapreplay Tcpreplay
1 3600.000 3564.012 3564.962
2 1800.000 1781.646 1784.305
4 900.000 890.749 892.991
8 450.000 444.901 447.348

16 225.000 222.259 224.431
32 112.500 111.214 112.976
64 56.250 55.191 57.315

128 28.125 27.688 29.349
256 14.063 13.424 15.619
512 7.031 6.787 8.755

1024 3.516 3.457 5.340
2048 1.758 1.742 3.891

This dataset was chosen because one of the files captured by gator010, 20090421.14.ftrm,
contains traffic that is consistent enough for us to be able to see the influence of
packet loss on the network traffic. We will be using the same 2.5 min of network
traffic that was used in our previous research.2 This will allow us to compare our
experimental results with our previous theoretical results.

3.3 Characterizing SLPL
To answer our first research question (Is there sufficient regularity in SLPL to allow
an algorithm to be developed to model it?), we will establish the null hypothesis
that sensor-level packet loss is sufficiently irregular, as to be effectively considered
random. We have plotted the effect of random packet loss on this dataset in Fig. 2.
To characterize the sensor-level impact, we will use Pcapreplay to replay the CDX
dataset, piping it to Snort version 2.9.3.1 using the community rules set from August
2013. Some trial and error will be necessary to discover the Pcapreplay speed set-
ting that will produce approximately 25% packet loss. We constructed a shell script
that would conduct trials starting at 2x, continuing until 32768x in a geometric pro-
gression, i.e., 2n, using a shell script like the one shown in Algorithm 4. This script
should allow us to quickly discover the correct multiplier to achieve 25% packet
loss. Once we discover the appropriate speed factor, we can graph the network traf-
fic in the bucket.pcap file. If the SLPL is random, we should see the abridged traffic
line beneath and almost identical to the orginal traffic line. If we see this kind of re-
lationship, we must accept the null hypothesis. If there is some regularity to SLPL,
the abridged traffic line will show some difference to the original traffic line beyond
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a simple reduction. This may be seen in the graph of the traffic from the sinusoidal
dropping algorithm in Fig. 2. If we see this kind of relationship, we must reject the
null hypothesis.
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Fig. 2 Manifestation of 25% packet loss generated by the packet dropper and measured in
packets/second

Algorithm 4 Shell script to automate repeated runs of Pcapreplay

# ! / b i n / sh
X=2
whi le [ $X − l t 65536 ] ; do

mkdir log$ {X}x
p c a p r e p l a y \

−x ${X} \
−w −\
−L log$ {X}x / r e p l a y . l o g \
−b log$ {X}x / b u c k e t . pcap $∗ |

s n o r t \
−c ~ / r u l e s / e t c / s n o r t . con f \
−r −\
− l l og$ {X}x 2> log$ {X}x / s n o r t . o u t

X= ‘ expr $X \∗ 2 ‘
done

3.4 Measuring the Impact of SLPL
To answer our second research question (Is the impact of SLPL on NID perfor-
mance sufficiently regular to allow a formula to be developed that will accurately
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predict the effect?), we will establish the null hypothesis that the impact of sensor
level packet loss is sufficiently irregular as to be effectively considered random. In
an attempt to prove the null hypothesis, we will run the CDX gator010 data through
Pcapreplay at various speeds, piping the output to Snort. We will be able to use
the shell script from Algorithm 4 with slight modifications to allow for different
progressions based upon the results we see from the initial trial in an attempt to ob-
tain a good spread through the packet loss rate (PLR) domain of 0% to 100%. The
replay.log file will contain the PLR, and the snort.out file will contain the number
of alerts. A control run of Snort against the dataset without Pcapreplay will tell us
the total number of alerts, which we may use to calculate the alert loss rate (ALR).
Plotting the PLR verses the ALR will allow us to compare the results against our
results from the theoretical exploration.2 We should be able to use curve fitting and
regression analysis techniques to discover a relationship and measure the fit. If we
are able to discover a relationship and obtain an R2 value close to 1, we will re-
ject the null hypothesis and may safely conclude that the impact of SLPL on NID
performance is sufficiently regular.

4. Results
We will divide our results according to our research questions. In Section 4.1, we
will describe the results of our efforts to observe how packet loss manifests itself at
the sensor level. In Section 4.2, we will describe the results of our efforts to observe
the impact this packet loss has on NID.

4.1 Sensor-Level Packet Loss Manifestation
When we ran our first trial, as described in Section 3, we discovered a speed setting
on our hardware that generated 25% packet loss. In Fig. 3, the blue line represents
the original traffic, and the red line represents the traffic abridged by Pcapreplay
at 25% packet loss. The traffic pattern does not resemble the random or function-
influenced traffic patterns from our previous research,2 seen in Fig. 2. Instead, it
resembles the patterns produced by the capped algorithms of the packet dropper
(see Fig. 4 for comparison). In Fig. 4, the blue line represents the original traffic
and the red line represents the traffic as abridged by the packet dropper using the
capped algorithm.
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Fig. 3 Manifestation of 25% packet loss generated by Pcapreplay and measured in
packets/second
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Fig. 4 Manifestation of 25% packet loss generated by the capped algorithm and measured in
packets/second

There is a caveat in that the resources of the system used to conduct the experiments
have an impact on the shape of the traffic graph. Fig. 5 demonstrates that as the size
of the system increases, the traffic graph flattens. The red line represents the results
of the experiment run on desktop-class equipment. This red line shows massive os-
cillation between an upper and lower bound centered around the cap. The yellow
line represents the results of the same experiment run on a small server. Some vari-
ance is visible in the yellow line; however, the line is much flatter. The black line,
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which shows very little variance, represents the results of the same experiment run
on a large server.

We observed another difference between the graphs produced by Pcapreplay and the
graphs produced by the packet dropper. The line representing packets per second
produced by the packet dropper immediately plateaus at the cap. The line repre-
senting packets per second produced by Pcapreplay continues to follow the normal
traffic flow until it drops and quickly settles into the cap. These observations have
little bearing on the current research; however, they may have significant influence
in future work as we attempt to validate the results of the packet dropper.
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Fig. 5 Comparison of the manifestations of 25% packet loss generated by Pcapreplay on
different hardware and measured in packets/second

4.2 Impact on the Performance of NID
We created several versions of the shell script described in Section 3 and executed
them to collect 4 trials. Each trial consisted of several runs of Pcapreplay, replaying
the CDX dataset described in Section 3.2, piped to snort version 2.9.3.1 using the
August 2013 rules set. We were able to collect the number of packets lost from
the Pcapreplay log and the number of alerts detected from the output of Snort. A
control run of Snort against the dataset without using Pcapreplay revealed that there
were 5,218,144 packets in the dataset and 275 alerts. We used this information to
compute the PLR and ALR for each run of the various trials. Given the similarity in
the manifestation of the packet loss to the capped algorithms of the packet dropper,
we expect to find a graph similar to Figs. 6 or 7. Figure 6 is the graph of the PLR
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versus the ALR when using the capped-by-packets algorithm of the packet dropper.
Figure 7 is the graph of the PLR versus the ALR when using the capped-by-bits
algorithm of the packet dropper. In Fig. 8 we see the experimental results.
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Fig. 6 PLR vs. ALR for CDX gator010 abridged with the capped-by-packets algorithm
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Fig. 7 PLR vs. ALR for CDX gator010 abridged with the capped-by-bits algorithm
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Fig. 8 PLR vs. ALR for CDX gator010 abridged with Pcapreplay

Notice that the graph generated by the packet dropper using the capped-by-packets
algorithm appears to be very similiar to our results obtained using Pcapreplay. This
confirms Salah’s finding that this process is CPU and not memory bound.5 In Fig. 9
we have plotted the results on the same graph to show this similarity. If we were
to treat the ALR of the packet dropper as the predictor ŷ and the ALR of Pcapre-
play as y, we could compute R2 to determine how well the packet dropper predicts
the results of Pcapreplay. This assumes that x or the PLR is the independent vari-
able, which is the model that we are seeking. The problem is that the true indepen-
dent variable in the Pcapreplay experiments is the speed multiplier, and PLR is a
function of that. This means that we cannot use the complete datasets from these
experiments. We must use a subset of the datasets where the PLR values are the
same. In Table 2 we see the selected data points, and in Table 3 we see several
key values. Using Formula 1 to compute R2, we get a value of 0.96, which would
be close enough to 1 to declare that the packet dropper and Pcapreplay are a good
fit if this were a linear regression. Our observation of the graph reveals that this is
most likely a nonlinear relationship resembling a sigmoid function (see Fig. 10).
Spiess and Neumeyer report that R2 is inadequate for judging the goodness of fit
for nonlinear models.17 They found that the Akaike Information Criterion (AIC),
bias-corrected AIC (AICc), Bayesian Information Criterion (BIC), residual vari-
ance (resVar), chi-square (χ2), and reduced chi-squared (χ2

v) were better indicators
of goodness of fit for nonlinear regression. These are computed using Formulas 5,
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6, 7, 8, 9, and 10, respectively,17 where ln(L) is the maximum log-likelihood, p
is the number of parameters in the model, and σ2 is the variation. Since the packet
dropper uses an algorithm rather than a formula, we set p = 3 because the algorithm
depends upon 3 indepedent variables. It turns out that the AIC, AICc, and BIC are
very good for comparing the fit to different forumlas; however, they do not indicate
very much standing alone. The χ2

v value may be used to judge the goodness of fit
for nonlinear regression, where the closer χ2

v is to 1, the better the fit. In this case
χ2
v is 1.1785, indicating that we have a good fit.

ln (L) = 0.5(−N(ln 2π + 1− lnN + ln
n∑
i=1

x2i )). (4)

AIC = 2p− 2 ln (L). (5)

AICc = AIC +
2p(p+ 1)

n− p− 1
. (6)

BIC = p ln (n)− 2 ln (L). (7)

resVar =
RSS
n− p

. (8)

χ2 =
n∑
i=1

(yi − f(xi))
2

σ2
i

. (9)

χ2
v =

χ2

v
. (10)

14



Table 2 Packet dropper and Pcapreplay comparison values

PLR PD ALR PR ALR e e2 (y− ȳ)2 (ŷ− ȳ)2

5 0.00 0.00 0.00 0.00 1561.95 1561.95
10 0.00 0.00 0.00 0.00 1561.95 1561.95
15 0.00 0.00 0.00 0.00 1561.95 1561.95
20 0.00 0.00 0.00 0.00 1561.95 1561.95
25 0.00 0.00 0.00 0.00 1561.95 1561.95
30 0.00 0.00 0.00 0.00 1561.95 1561.95
35 0.36 0.00 -0.36 0.13 1561.95 1533.34
40 1.82 0.00 -1.82 3.31 1561.95 1421.54
45 6.91 8.73 1.82 3.31 948.29 1063.57
50 21.09 13.45 -7.64 58.31 679.49 339.69
55 30.55 28.00 -2.55 6.48 132.75 80.57
60 45.09 40.00 -5.09 25.92 0.23 31.02
65 54.55 79.27 24.73 611.44 1580.16 225.72
70 69.09 92.36 23.27 541.62 2792.29 874.35
75 80.73 95.27 14.55 211.57 3108.20 1697.91
80 90.55 96.73 6.18 38.21 3272.50 2987.44
85 94.18 98.18 4.00 16.00 3441.03 2987.75
90 98.55 98.91 0.36 0.12 3526.88 3483.82
96 99.64 100.00 0.36 0.13 3657.64 3613.79
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Table 3 Key values to describe the relationship between the packet dropper and Pcapreplay

Name Value
x̄ 50
ȳ 39.52

SSE 1516.56
SStot 35635.06
SSreg 29328.22
SSres 1516.56
R2 0.96

ln (L) -14452.8
AIC 28911.54

AICc 28913.14
BIC 28914.38

resVar 94.78512
χ2 19
χ2
v 1.1875

0 20 40 60 80 100

0

20

40

60

80

100

PacketLossRate

A
le
rt
L
os
s

Fig. 9 PLR vs. ALR for CDX gator010 abridged with the packet dropper using the capped-
by-packets algorithm and abridged by pcapreplay

We will now look more closely at the Pcapreplay data to determine if there exists a
relationship y = f(x), where y is ALR and x is PLR. Observing Fig. 8, we see that
the relationship between PLR and ALR is nonlinear. The growth in ALR is slow
at the start, and at the end of the PLR domain is an S-shaped pattern. This is the
behavior of a sigmoid function illustrated in Formula 11 and Fig. 10. We will use the
general logistic function in Formula 12 as the model for our nonlinear regression,
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where A is the lower asymptote, K is the upper asymptote, B is the growth rate, v
affects near which asymptote maximum growth occurs,Q depends on the value of y
when x = 0, and M is the time of maximum growth. We were able to use the solver
in Microsoft Excel to discover values for A, K, B, v, Q, and M . These values are
shown in Table 4 along with the values for several other variables, including the R2

and χ2
v.

y =
1

(1 + e−x)
. (11)
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Fig. 10 Sigmoid nonlinear regression model

y = A+
K − A

(1 + e−B(x−M))
1
v

. (12)

17



Table 4 Key values of the regression analysis of the impact of SLPL

Name Value
A 0
K 100
B 200.948
v 2.88963
Q 0.36356
M 68.4576
SSE 2765.56
ȳ 35.78
x̄ 48.56429
SSR 385175.22
SSyy 386765.96
SSxx 146326.0840484140
R2 0.9958896459
ln (L) -1829.221623
AIC 3670.443247
AICc 3670.803762
BIC 3691.32708
resVar 11.81862199
χ2 240
χ2
v 1.025641026

5. Conclusions
Through this research we were able to answer each of our research questions in the
affirmative. We determined that SLPL is sufficiently regular to allow an algorithm
to be developed to model it. We discovered that the capped-by-packets algorithm of
the packet dropper, developed in a previous work,2 models SLPL in this dataset with
R2 and χ2

v values very close to 1. We were able to determine that the impact of SLPL
on NID performance is sufficiently regular to allow a formula to be developed that
will accurately predict the effect, and we defined a formula that predicts the effect
on this dataset with R2 and χ2

v values very close to 1. We claim that the existance
of the packet dropper algorithm that models SLPL accurately for this dataset and
the formula that predicts the impact of SLPL on NID performance for this dataset
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demonstrate the affirmative answers to our research questions. We make no claim
that this algorithm or formula is the correct algorithm or formula to model SLPL or
the impact of SLPL in general.

The ultimate goal is to discover a general function y = f(x), where y is ALR and
x is PLR. This function will allow us to accurately predict the impact of packet
loss on NID. To achieve this goal, a study of the combined effect of packet loss
across all 3 layers should be conducted upon the foundation that has been laid by
studying each layer individually. The packet dropper algorithm needs to be refined
and validated based upon the findings of the combined study. Replaying a dataset
at several multiples of its original speed is a time–consuming process even when it
may be completely automated. The CDX dataset that we used was originally 105
h long. Replaying the dataset in an exponential progression (i.e., 2n) would require
210 h. Often this technique does not produce enough data points, and the process
would take even longer. Some of the datasets studied in our previous research are 7
weeks long and would be completely impractical to study by replaying them at sev-
eral multiples of the original speed. Having a validated packet dropper, which can
process the dataset in minutes rather than days, would greatly benefit the research.
With a validated packet dropper, it may be possible to analyze several datasets and
generate and validate a general function.
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Programmerś Manual; Raleigh (NC): Red Hat, Inc.; 2014.

16. Usleep - sleep some number of microseconds. In: Chapter 3 of the Linux Pro-
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PCAPREPLAY(1) PCAPREPLAY(1)

NAME
pcapreplay − Replays a libpcap file with a given acceleration.

SYNOPSIS
pcapreplay [options] [pcapfile] ...

-L --logfile set the file where dianostic info is written.
-b --bitbucket set the bit bucket file.
-h --help print usage information.
-r --readfile set the readfile.
-v --version print the version informaiton.
-w --writefile set the writefile.
-x --accelerate set acceleration factor.

DESCRIPTION
Pcapreplay concatenates the files in the pcap format given on the command line and writes them at the
speed in which they were captured with a user provided acceleration factor. Packets that cannot be written
in time may optionally be placed in a bit bucket file.

EXAMPLE(S)
The following command will replay the capture.pcap file at 5 times the orginal speed to standard output
over a pipe to snort. Packets that cannot be written in time will be written to the bucket.pcap file.

$ pcapreplay −x 5 −b bucket.pcap -w - capture.pcap | snort

SEE ALSO
libpcap(3), tcpdump(8)

AUTHOR(S)
Sidney C. Smith, Computational Information Sciences Directorate, US Army Research Laboratory

ARL 1



List of Symbols, Abbreviations, and Acronyms

ACRONYMS:

ALR alert loss rate

CDX Cyber Defense Exercise

CPU Central Processing Unit

DRPL detection–relevant packet loss

NID network intrusion detection

PLR packet loss rate

SLPL sensor–level packet loss

MATHEMATICAL SYMBOLS:

R2 the coefficient of determination

SSE sum of the squares of error SSE =
∑n

i=1(yi − (̂y)i)
2

SStot total sum of squares SSyy =
∑n

i=1(yi − ȳ)2

SSreg sum of squares regression SSreg =
∑n

i=1(ŷi − ȳi)2

SSres residual sum of squares SSres =
∑n

i=1(ŷi − yi)2

ln (L) maximum log-likelihood ln (L) = 0.5(−N(ln 2π+1−lnN+ln
∑n

i=1 x
2
i ))

AIC Akaike Information Criterion AIC = 2p− 2 ln (L)

AICc bias-corrected AIC AICc = AIC + 2p(p+1)
n−p−1

BIC Bayesian Information Criterions BIC = p ln (n)− 2 ln (L)

resVar residual variance resVar = RSS
n−p

χ2 chi-square χ2 =
∑n

i=1
(yi−f(xi))2

σ2
i

χ2
v reduced chi-squared χ2

v = χ2

v

σ2
i the variance σ2

i =
∑n

i=1(yi−ŷi)2)
n−1
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MATHEMATICAL OPERATORS:

ȳ the bar over the variable indicated the mean value for that variable

ŷ the hat over the variable indicates the value predicted by the regression
function
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